THE INVERSE OF THE PASCAL LOWER TRIANGULAR MATRIX MODULO p

نویسنده

  • A. R. MOGHADDAMFAR
چکیده

Let L(n)p be the Pascal lower triangular matrix with coefficients `i j ́ (mod p), 0 ≤ i, j < n. In this paper, we found the inverse of L(n)p modulo p. In fact, we generalize a result due to David Callan [4].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riordan group approaches in matrix factorizations

In this paper, we consider an arbitrary binary polynomial sequence {A_n} and then give a lower triangular matrix representation of this sequence. As main result, we obtain a factorization of the innite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Further some interesting results and applications are derived.

متن کامل

LU factorization of the Vandermonde matrix and its applications

A scaled version of the lower and the upper triangular factors of the inverse of the Vandermonde matrix is given. Two applications of the q-Pascal matrix resulting from the factorization of the Vandermonde matrix at the q-integer nodes are introduced. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

Pascal Matrices and Particular Solutions to Differential Equations

In this paper any non-homogeneous differential equation with constant coefficients is reduced to a matrix equation ~q = ~cP . For the discussion, ~q represents a matrix of constant coefficients to the differential equation, ~c a matrix of arbitrary constants to the solution, and P is a lower triangular matrix with entries that are derivatives of the characteristic polynomial of the differential...

متن کامل

Generalized Drazin inverse of certain block matrices in Banach algebras

Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.  

متن کامل

A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays

We study the properties of a parameterized family of generalized Pascal matrices, defined by Riordan arrays. In particular, we characterize the central elements of these lower triangular matrices, which are analogues of the central binomial coefficients. We then specialize to the value 2 of the parameter, and study the inverse of the matrix in question, and in particular we study the sequences ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010